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Abstract In this paper, we study new configurations of benzenoid hydrocarbons,
called benzenoid links. Roughly speaking, a primitive corofusene is a closed narrow
hexagonal ribbon with out-of-plane curvature 0. A primitive corofusene or the union
of disjoint primitive corofusenes in R

3 is called a benzenoid link. In this paper, we
determine the minimum number of hexagons needed for a nontrivial benzenoid link
in different senses. We also determine the structures of the smallest and the second
smallest nontrivial benzenoid links of different types and their numbers of Kekule
structures. We list all the benzenoid Hopf links of type III with 22–25 hexagons by
their canonical codes in the appendix.
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1 Introduction

In the late nineteenth century physicists and mathematicians began to be interested in
the study of knots. Since the 1970s, the research in this field has experienced explo-
sive growth. One reason for this is due to the needs in mathematics and physics,
with the early history described by Silver [1], and a thorough up-date of the modern
developments in Kaufmann [2]. Another reason is that there occur knotted topological
configurations of biomolecules, notably of DNA, as discovered [3] in the mid 1970s,
but now with many more recent reviews [4,5], and also more recently the possibil-
ity of knotted proteins has gained [6,7] some attention. Indeed, chemists have had a
continuing interest in the synthesis of non-trivial knotted molecules, as exemplified
in the seminal 1961-paper of Frisch & Wasserman [8], and further there has been
concern [9,10] that knotting & linking in polymers may notably effect their proper-
ties. A successful synthesis of a well characterized knotted molecule was reported
[11] in 1989, though there were many early reports of probably linked “catenanes”,
as recently reviewed [12]. Also in the solid state, multiply interlinked networks in
crystals are recognizable [13] in an early (1941) article of Zhadanow [14], and also
[15] in another compound in 1966. Now there are many reviews of knotted molecular
structures [16–20]. The synthesis of the smallest molecular knots has become a chal-
lenging task for chemists. Also sometimes knot theory has been proposed [21,22] as
of use in the characterization of other (unknotted) molecular structures.

On the other hand, the study of benzenoid hydrocarbons has a long history. The
pioneering synthetic effort and key successes can be found in the excellent references
[23–29]. More than 20 years ago, a primitive coronoid was successfully synthesized
by Diederich and Staab after 10 years of effort [see Fig. 1a]. The physical and chemical
properties had also been studied by chemists [30–35]. The second primitive coronoid
was synthesized 8 years after the synthesis of the first one [see Fig. 1b]. Some theo-
retical studies were carried out, including molecular geometry, aromaticity, magnetic
susceptibility, H-chemical shifts and zero-field splitting [36–46]. Then, two books
[47,48] on the theory of coronoid hydrocarbons were published in Lecture Notes
in Chemistry (Vol. 54 and Vol. 62). It is natural to consider the primitive coronoids
as molecular realization of the trivial knots. Another existing hydrocarbon molecu-
lar structures that consist of hexagons, and are termed helicenic systems (cf. Fig. 1c,
[46,49–55]). This type of benzenoid hydrocarbon is geometrically nonplanar. The

(a) (b) (c) (d) (e)

Fig. 1 a, b The first two synthesized primitive coronoids. c A synthesized hexahelicene (more helicenes
are indicated in Fig. 2 by their inner dual graphs). d, e Primitive corohelicenes
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structures of primitive coronoid systems and helicenes inspire us to consider the struc-
tures (geometrically planar and nonplanar) of closed benzenoid chains with curvature
0, called primitive corofusenes. Note that a primitive corofusene formed by a closed
narrow hexagonal-ring ribbon with curvature 0 can be considered as a knot made
from a hexagonal chain. The criterion of 0-curavature [56] can be interpreted to mean
that the hexagons in the chain are very nearly regular, and successive rings are very
nearly co-planar. Now we define the inner dual graph of a primitive corofusene in the
following way: a vertex is drawn at the center of each hexagon, and two vertices are
connected by a straight line segment if they lie in adjacent hexagons. One can see that
the inner dual graph of a primitive corofusene is a polygonal knot, i.e., a knot that
is made by connecting a finite set of straight line segments in R3 through their end
points. A primitive corohelicene is a geometrically nonplanar primitive corofusene
whose inner dual graph is a trivial polygonal knot. It is natural to consider the geo-
metrically nonplanar primitive corofusene whose inner dual graph forms a nontrivial
polygonal knot. Thus the primitive corofusenes with inner dual graph homeomorphic
to a circle in R

3 can be classified as the following types (cf. [48] P. 45).

Primitive corofusenes
Primitive coronoids
Primitive corohelicenes
Benzenoid knots

A primitive coronoid is a geometrically planar primitive corofusene. (eg Fig. 1 (a))

inner dual graph is at rivial polygonal knot. (eg Fig. 1 (d,e))

dual graph is a nontrivial polygonal knot. (eg Fig. 6)

A primitive corohelicene is a geometrically nonplanar primitive corofusene whose

A benzenoid knot is a geometrically nonplanar primitive corofusene whose inner

In this paper, we mainly study the new configurations of benzenoid hydrocarbons,
called benzenoid links, each of which is a primitive corofusene or a finite union of
disjoint corofusenes in R

3. We determine the minimum number of hexagons needed
for a nontrivial benzenoid link in different cases. We also determine the structures of
the smallest and the second smallest nontrivial benzenoid links in each case and their
numbers of Kekule structures. We list all the benzenoid Hopf links of type III with
22–25 hexagons by their canonical codes in the appendix.

2 Preliminaries

A graph G is an ordered triple (V (G), E(G), ψG) consisting of a non-empty set V (G)
of vertices, a set E(G), disjoint from V (G), of edges, and an incidence function ψG

that associates each edge of G with an unordered pair of (not necessarily distinct)
vertices of G. A walk in G is a finite non-null sequence W = v0e1v1e2v2 · · · ekvk ,
whose terms are alternately vertices and edges, such that, for 1 ≤ i ≤ k, the ends of
ei are vi−1 and vi . If the edges e1, e2, . . . , ek of a walk W are distinct, W is called
a trail. If, in addition, the vertices v0, v1, . . . , vk are distinct, W is called a path. A
chain in G is a path whose internal vertices (if there are any) all have degree two in
G. A chain is called a maximal chain in G if its initial and terminal vertices both have
degree greater than two in G. A link with n components is a subset of Euclidean space
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E3 such as to consist of n disjoint non-self-intersecting cyclic curves. A knot or cycle
is a link with a single component.

Links are to be correlated with suitable benzenoid-like constructions. A (finite) ben-
zenoid B is a collection of all the 6-cycles inside a simple closed (Jordan) curve C in the
honeycomb network with C marking the boundary of the 6-cycle region constituting
B. If inside such a B one deletes subsets of internal edges such that every remaining
edge occurs in one or more of the remaining 6-cycles, then one obtains a multi-coro-
noid (though when there is just one resultant hole introduced, it is often termed just a
coronoid). These benzenoids & multi-coronoids may be viewed to be constructed from
geometrically regular hexagons with co-planar fusions at single edges, so that all is
embedded in the Euclidean plane R

2. A more general construction utilizes essentially
regular (or more briefly e-regular) hexagons which mathematically are arbitrarily close
to being regular such as to allow the same local structures already utilized for benze-
noids and multi-coronoids but now allowing embeddings in Euclidean space R

3. That
is, fusions of e-regular hexagons occur along edges such that each site has no more than
three edges incident, no more than two hexagons fuse at a given edge, and adjacent
hexagons are e-co-planar, in the sense that they are mathematically arbitrarily near to
being co-planar. More specifically these “essentiality” or “e” conditions are that the
sites involved are viewable as all being within an arbitrarily small ε > 0 distance of
corresponding sets of sites which are exactly regular or co-planar. Were one to take the
limit ε → 0, non-disjointness could result in general. With such a restriction there is in
an idealized mathematical model with arbitrarily little curvature out of the plane, and
one may say the net (combinatorial) curvature is 0. This then allows the “helicenic”
structures of Fig. 1c,d as well as further helicenes of 7 or more rings, with full rings
“overlapping” one another. Notably such n-ring helicenes are experimentally known
for n up to at least 10 (see Fig. 2). The enumeration of helicenes are reported in [50]. All
this may also be viewed in terms of multiple sheets of the regular honeycomb lattice,
with shifts from one sheet to another taken to avoid self-intersection. Now granted
such a polyhex (or generalized benzenoid) G embedded in E3, one may associate an
inner dual G∗ with vertices at centers of the hexagonal faces and edges between such
vertices at the centers of adjacent (edge-fused) faces. If the resultant inner dual G∗ is
a link, then G∗ is said to be a polygonal link, and G is a benzenoid link.

There are some general aspects of these benzenoid links [56–59]. First, each com-
ponent of such a G∗ is a cycle C , and the corresponding component C (∗) of G is a
cyclo-phenacene [56–58]. If such a component of G∗ contains n sites, then the cor-
responding component is a cyclo-n-phenacene, with a formula C4n H2n , since every
hexagon in such a cycle is seen to have two degree-2 sites (with an H atom attached).
Now further each such cycle C has a writhe number W (C) , which is the number of
full rotations through which one turns in following the edges of C around C to return
to the initial site. Moreover, the associated cyclo-phenacene C (∗) has two boundaries,

Fig. 2 The inner dual graphs of
6, 7, 8, 9, 10-ring helicenes

n=6 n=7 n=8 n=9 n=10
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since the essentiality conditions mean that it is not like a Mobius strip. Moreover the
number of H-atoms (equal to the number of degree-2 sites) on either of these bound-
aries depends on the writhe number in a fairly simple way: the number of H atoms on
the two boundaries is n + 6W (C) & n − 6W (C), whence (if W (C) �= 0) we call the
two respective boundaries the outer & the inner . To see this result note that as one
proceeds around a boundary of C (∗) one turns through a net angle of W (C) × 360◦,
with each turn at a site being ±60◦, and note that the ± sign occurs at a degree-2
or degree-3 site, with this correspondence being opposite for the two boundaries of
C (∗). (This result generalizes the well-known result for benzenoids that the number of
H atoms on the outer boundary is six more than the number of degree-3 sites on the
boundary - and it generalizes a similar result for multi-coronoids, involving 6 more
for the outer boundary and six less for the boundary of each hole). For a C (∗) with
W (C) = 0, there evidently is an ambiguity as to which boundaries of C (∗) one would
wish to call inner & outer .

Remark 1 There is an interesting article [60] which considers polyphenylenes. It is
not difficulty to see that the polyphenylene can also form links. We will discuss them
elsewhere.

A benzenoid link G and its inner dual graph G∗ may be projected into the Euclidean
plane. That is, each hexagon of G is taken to be a hexagon of the regular honeycomb
lattice such that neighbor hexagons are preserved, whence at most two hexagons of
G can be mapped to the same hexagon of the honeycomb lattice. Also the inner dual
graph G∗ is similarly mapped to E2, with the vertices G∗ mapped to the centers of
the corresponding image hexagons in the honeycomb lattice. The resultant structure
S(G∗) is termed the shadow of the benzenoid link G.

The unit of length is conveniently taken to be that of the edges in the underlying
honeycomb lattice. Further we consider subclasses of all benzenoid links G which
satisfy different sets of further conditions, which basically demand a minimal amount
of “overlapping” while still allowing non-trivial knotting:

(i) The length of any maximal chain of S(G∗) is at least 2.
(ii) There is at least one hexagon of G in the interior of every face of S(G∗)

(say a hole of the face).
(iii) The Euclidean distance between any nonadjacent vertices is greater than 1,

except the two nonadjacent vertices are both adjacent to the same vertex of
degree 4 (e.g. see u, v, w in Fig. 2).

(iv) Edge crossings of G∗ are “straight”, in the sense that for any degree-4 vertex w
of S(G∗) the associated incident edges form a cross, as in Fig. 3, with opposite
edges corresponding to adjacent edges of G∗ (Fig. 4).

The examples in Fig. 5 are chosen to indicate that the conditions (ii), (iii), (iv) are
independent, in the sense that there exist examples (see Fig. 5a–c) which violate one
condition, while not violating the other two. On the other hand, if the condition (i)
is violated, at least one of the conditions (ii), (iii), (iv) is violated, since there is only
three ways to produce a maximal chain with length 1 (see Fig. 5d–f).

If all four conditions are satisfied, then G is said to be a benzenoid link of type
I; while if the first three are satisfied, then G is said to be of type II; if only the first
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Fig. 3 The shadow of a benzenoid trefoil knot

Fig. 4 Two edges cross “straightly”

(a) (b) (c) (d)

(e) (f)

Fig. 5 a–c Violate conditions (ii), (iii), (iv) respectively. d–f Violate condition (i) and conditions (ii), (iii),
(iv) respectively

two condition is satisfied, then G is said to be of type III; In the next section, we will
consider the three types of benzenoid links respectively.

These conditions may be viewed first to correlate more closely with typical topo-
logical definitions for knots not correlated to a discrete underlying lattice. On the
chemical side, bearing in mind the configuration of synthesised coronoids these con-
ditions are likely to be satisfied for all benzenoid links, Though it is just this smaller
sized knots focused on here.
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Remark 2 If we suppress all the vertices of degree 2 of the shadow S(G∗), we will
get a reduced shadow. This is 4-regular, and it can be regarded as a universe of the
corresponding link diagrams.

Remark 3 Condition (ii) implies that every face of S(G∗) has at least 6 vertices.

Example 1 Two benzenoid trefoil knots and two benzenoid Hopf links of type I, II
and III (Fig. 6).

3 Main results

Let H(L) denote the number of hexagons for a benzenoid link L . We get:

Theorem 3.1 For any nontrivial benzenoid link L of type I, H(L) ≥ 24. Moreover,
equality holds if and only if L is one of the four benzenoid links in Fig.6.

Proof Throughout this proof, a benzenoid link is understood to be a benzenoid link of
type I. Clearly there exists a nontrivial benzenoid link L0, such that for any nontrivial
benzenoid link L , H(L0) ≤ H(L). All we need to prove is that L0 is either a benzenoid
trefoil knot or a benzenoid Hopf link, and any benzenoid trefoil knot or benzenoid
Hopf link different from the ones in Fig. 6 has more than 24 hexagons. From Example
1, we immediately know H(L0) ≤ 24. We identify the embedding of L0 in the planar
hexagonal lattice with the reduced shadow G, and identify the benzenoid link with its
inner dual graph. Consider the boundary C of the infinite face of G. Obviously, C is
a closed trail.

Claim 1: The vertices of C are distinct. That is , C is a cycle.
Otherwise, G has a configuration as Fig. 7. we can take G apart as in Fig. 7. Then

the link corresponding to G, denoted L0, is the connected sum of the links corre-
sponding to A and B. Since L0 is nontrivial, one of the links corresponding to A and
B is nontrivial. Choose the nontrivial one. There are at least six fewer hexagons in the
corresponding benzenoid link induced by L0 than L0, a contradiction.

Claim 2: All the vertices of G are on the cycle C .
Color the faces of G with black and white properly, such that the infinite face is

colored white. If there is a vertex inside C , near the vertex there are two white regions
A, B contained entirely in C . Let CA, CB denote the boundaries of A, B respectively.
Considering positions of A and B, there are exactly two cases as shown in Fig. 8.

(a) (b) (c) (d)

Fig. 6 Two benzenoid trefoil knot and two benzenoid Hopf links with 24 hexagons
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Fig. 7 Decomposition
of G into A & B

G A B

(1)

CA CB

A B
k1

k2

k3

k4

k5

(2)

k1

k2

A

B

C C

k3

k4

k5
S1

S2

Fig. 8 (1): A, B are distinct regions. (2): A, B are the same region, and S1 ∪ S2 = CA = CB

Although C and CA ∪ CB can have common vertices, they cannot have common
edges (because A, B and the infinite face are all colored white). Furthermore the
common vertex corresponds to multilayer hexagons.

Clearly, in either of the two cases, there are at least three faces in C . There are at
least three hole hexagons by condition (i i). Note that these hole hexagons are different
from k1, k2, k3, k4, k5. By condition (i), k1, k2, k3, k4, k5 and two other hexagons on
CA ∪ CB are not on C . That is, they are contained entirely in C . Then there are at
least 3 + 5 + 2 = 10 hexagons contained entirely in C . A benzenoid cycle with less
than 14 hexagons cannot contain greater than 8 hexagons inside (cf. [47] P94, 95).
So C has at least 14 hexagons. On the other hand, |CA| + |CB | ≥ 6 + 6 = 12
and |S1| + |S2| ≥ 6 + 6 = 12 by Remark 3. So the benzenoid link L0 has at least
14 + 12 = 26 hexagons in either case, a contradiction.

Claim 3: Let C = v0v1 . . . vn(vn = v0), then for any edge viv j ∈ E(G),
min{|i − j |, n − |i − j |} = 1.

Suppose, to the contrary, that there exist i and j such that min{|i− j |, n−|i− j |} ≥ 2
and viv j ∈ E(G). Since G is 4-regular, there exist vs and vt such that vivs, v jvt ∈
E(G). Without loss of generality, we assume that s ∈ {i, i + 1, . . . , j}(mod n). Then
t ∈ {i, i + 1, . . . , j}(mod n). Otherwise, since G would be planar and 4-regular,
G − {v j+1, v j+2, . . . , vi−1}(mod n) is a graph containing only one vertex i with odd
degree. This is impossible. Then C has the following configuration (Fig. 9):

The line l intersects C at two points, and takes C apart. Clearly, L0 is the con-
nected sum of the links corresponding to A

⋃{vkvk+1|k = i − 1, i, . . . , j(mod n)}
and B

⋃{vkvk+1|k = j, j +1, . . . , i −1(mod n)}, where A is the induced subgraph of
{v j+1, v j+2, . . . , vi−1} (mod n) and B is the induced subgraph of {vi , vi+1, . . . , v j }
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Fig. 9 The long vertical line
partitions the graph into A and B

Fig. 10 G
V n

=V 0
V1

Vn–1

Vn–2

1

n

n-1

Fig. 11 G

(mod n). Note that both A and B are non-empty. Since L0 is nontrivial, one of the
links corresponding to A

⋃{vkvk+1|k = i−1, i, . . . , j(mod n)} and B
⋃{vkvk+1|k =

j, j +1, . . . , i −1(mod n)} is nontrivial. Choose the nontrivial one. There are at least
six fewer hexagons in the corresponding benzenoid link induced by L0 than in L0, a
contradiction.

Claim 4: G has the form of Fig. 10.
From Claim 3, we know that if avi ∈ E(G), then a = vi+1 or a = vi−1, for any i . G

is 4-regular, then G has the form of Fig. 10. Otherwise there exist k (k = 0, 1, . . . , n−1)
and n > 2 such that vk is adjacent to vk+1 with three different edges (see Fig. 11).

By the reason mentioned in Claim 3, there exists a nontrivial benzenoid link with
at least 6 hexagons fewer than L0, a contradiction.

Claim 5: n ≤ 3.
Case 1: n ≥ 5. There exist n edge-disjoint cycles in G and each cycle has only
a single hexagon in common with the next (see Fig. 10). Furthermore, the common
hexagon is of multi-layers. Every cycle has at least 6 hexagons. So the benzenoid link
has at least 6n ≥ 30 hexagons, a contradiction.
Case 2: n = 4. By the reason mentioned above, this benzenoid link has at least 24
hexagons. Furthermore, when it has exactly 24, each of the four cycles has exactly 6
hexagons. Figure 12 shows all the cases of the embedding of three cycles, such that
each of the cycles has exactly 6 hexagons. Obviously, adding one more cycle with 6
hexagons cannot get C = v0v1v2v3. So this benzenoid link has more than 24 hexagons,
a contradiction.

Claim 6: L0 is either a benzenoid trefoil knot or a benzenoid Hopf link.

123



466 J Math Chem (2010) 47:457–476

Fig. 12 Embeddings of 3 cycle

It is easy to check the following: if n = 3, the corresponding benzenoid link is
either a benzenoid trefoil knot or a trivial benzenoid knot; if n = 2, the corresponding
benzenoid link is either a benzenoid Hopf link or a trivial benzenoid link.

Now we turn to show that any benzenoid trefoil knot or benzenoid Hopf link dif-
ferent from the ones in Fig. 4 has greater than 24 hexagons.

The shadow of each component of a benzenoid Hopf link is a primitive coronoid.
So the shadow of a benzenoid Hopf link can be regarded as a union of two prim-
itive coronoids, such that it satisfies the four conditions and its inner dual graph is
the shadow of a benzenoid Hopf link. All the primitive coronoids with less than 16
hexagons were listed in [47] P94–97. With careful checking, we get that the minimum
possible numbers of hexagons for a benzenoid Hopf link is 24 and any benzenoid Hopf
link different from the ones in Fig. 6 has greater than 24 hexagons.

If the hexagons near one of the three inner-dual vertices of the shadow of a benze-
noid trefoil knot take the form of Fig. 13 (1). After removing the vertex [see Fig. 13.(3)]
it becomes a benzenoid Hopf link. Note that when removing this vertex, in fact we
remove two hexagons (one is beneath the other). So the original benzenoid trefoil
knot has at least 24 + 2 = 26 hexagons. If the hexagons near every vertex take the
form of Fig. 13(2), we remove all of the three vertices with degree 4 as in Fig. 13(3).
Then we get a trivial benzenoid link with three components. We have mentioned that
a benzenoid cycle has at least 6 hexagons. So the original benzenoid trefoil knot has
at least 6 × 3 + 2 × 3 = 24 hexagons. When we get the minimum number 24, the
benzenoid trefoil knot is constructed by three benzenoid cycles with 6 hexagons, and
each cycle connects with the next by a crossing. It is easy to check that only the two

a1

a2

a3
a4

a5

a6

b1
b2

b3

b4

b5

b6

ai

ai+1

bi

bi+1

bi

ai

bi+1

ai+1

(1) (2) (3)

Fig. 13 The hexagons near each of inner-dual vertices of the shadow take the form of (1) or (2)
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(a) (b) (c)

Fig. 14 Some benzenoid links of type II with 24 hexagons

benzenoid trefoil knot in Fig. 6 can satisfy these conditions. Thus we have completed
the proof of the theorem. 	


Next, we consider benzenoid links L of type II. It seems to be reasonable to think
that the minimum number of hexagons of the benzenoid links of type II is smaller than
24. But this is not so. In the following theorem, we show that the minimum number
of hexagons of the benzenoid links of type II is equal to that of type I, but there are
three more benzenoid links with the minimum number of hexagons (Fig. 14).

Theorem 3.2 For any nontrivial benzenoid link L of type II, H(L) ≥ 24. Moreover,
equality holds if and only if L is a benzenoid link in Figs.6 or 14.

Proof A benzenoid link is understood to be of type II throughout this proof. There
is a striking similarity between the proofs of Theorem 3.1 and 3.2. We only need to
make a slight change to prove the fact that any benzenoid trefoil knot or benzenoid
Hopf link different from the ones in Figs. 6 and 14 has more than 24 hexagons.

The shadow of a benzenoid Hopf link can be regarded as a union of two primitive
coronoids, such that it satisfies the first three conditions and the inner dual graph of it
is the shadow of a benzenoid Hopf link. With a careful check, we find that the mini-
mum possible hexagons for a benzenoid Hopf link is 24 and any benzenoid Hopf link
different from the ones in Figs. 6 and 14 has greater than 24 hexagons.

Now we turn to the benzenoid trefoil knots. Figure 15 lists all the possible cases
of ai , bi (i = 1, 2, . . . , 6) near the vertices (cf. Fig. 13). If the hexagons near one of
the three vertices take the form of Fig. 15(2), (3), (4), (5), (6) or (7), we can find a
benzenoid Hopf link, such that the benzenoid Hopf link has fewer hexagons than the
original benzenoid trefoil knot.

We take Fig. 15(7) as an example. By condition (i i i), A, B,C, D, E (see Fig. 16a)
are not on any edges of the shadow. So bi and F , bi+1 and G are consecutive hexagons
on some edges of the shadow. Then H (I , resp.) is either a successive hexagon to

ai ai+1

bi bi+1

(1)

ai ai+1

bi

bi+1

(2)

ai
ai+1

bi

bi+1

(3)

ai

ai+1

bi

bi+1

(4)

ai

ai+1

b i
bi+1

(5)

ai
ai+1

bi

bi+1

(6)

ai

ai+1

bi

bi+1

(7)

Fig. 15 The hexagons near vertex takes the form of (1), (2), (3), (4), (5), (6), or (7)
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B

A

E
F

D

C

H bi

bi+1

ai

ai+1

(a) (b)

G

bi

bi+1

ai

ai+1

(c)

ai

ai+1

bi

bi+1

bi

bi+1

ai

ai+1

(d)

Fig. 16 One case

F (G, resp.), or on none of the edges of the shadow. If H and I are not on any edges,
we remove bi , bi+1 as Fig. 16b. If H is successive to F and I is not on any edge of
the shadow, we have as Fig. 16c. If I is successive to G and H is not on any edge of
the shadow, we have as Fig. 16d. By condition (iii), it is not possible that H and I are
successive hexagons to F and G, respectively. Then we get a benzenoid Hopf link
which has less hexagons than the original benzenoid knot. So the original benzenoid
trefoil knot has more than 24 hexagons. Other cases can be considered similarly. If
all the vertices take the form of Fig. 15(1), then as in the proof of Theorem 3.1, only
the two benzenoid trefoil knot in Fig. 6 have 24 hexagons. Thus we have proved the
theorem. 	


Now we turn to the case of type III. Obviously, any benzenoid link of type I or type
II is a benzenoid link of type III, but the converse is not true.

Theorem 3.3 For any nontrivial benzenoid link L of type III, H(L) ≥ 20. Moreover,
equality holds if and only if L is the benzenoid link in Fig.17.

Proof A benzenoid link is understood to be of type III throughout this proof. Choose
L0 as in Theorem 3.1. From Fig. 17, H(L0) ≤ 20. The proof that L0 is either a ben-
zenoid trefoil knot or a benzenoid Hopf link is the same as the proof in Theorem 3.1
and 3.2. To complete the proof, we only need to show that any benzenoid Hopf link
different from the one in Fig. 17 has more than 20 hexagons. and any benzenoid trefoil
knot has more than 20 hexagons.

The shadow of a benzenoid Hopf link can be regarded as a union of two primitive
coronoids, such that it satisfies the first two conditions and the inner dual graph of it is
the shadow of a benzenoid Hopf link. With careful checking, we get that the minimum

Fig. 17 The benzenoid Hopf
link with 20 hexagons that is of
type III, but not type I or II
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possible numbers of hexagons for a benzenoid Hopf link is 20 and any benzenoid
Hopf link different from the ones in Fig. 17 has greater than 20 hexagons.

By condition (i), (i i), the thin line (thick, resp.) in Fig. 18 contains at least 5 (3,
resp.) hexagons inside. And they are similar to primitive coronoids. By [47] P94–97,
we know the thin (thick, resp.) line has at least 11 (10, resp.) hexagons. Moreover
there cannot exist a benzenoid trefoil knot with the thin line having 11 hexagons. So
any benzenoid trefoil knot has at least 22 hexagons. This completes the proof. 	


Now we list all the benzenoid links of type I, II with 25 hexagons, and the benzenoid
links of type III with 21 hexagons. Instead of giving a complete proof here, we just
point out that it is based on the following facts:

(1) For any second smallest nontrivial benzenoid link of type I or II, Claims 1–5
hold. Note that in Fig. 12, adding one more cycle with 7 hexagons cannot get
C = v0v1v2v3. So any second smallest nontrivial benzenoid link of type I or II
is a Hopf benzenoid link or a trefoil benzenoid knot.

(2) By condition (i) and (ii), each component of a benzenoid Hopf link of type I, II
or III contains at least 3 hexagons inside. Then each component of a benzenoid
Hopf link of type I, II or III with 25 hexagons has more than 9 hexagons and less
than 16 hexagons. So from [47] P94 − 97, we can get all the benzenoid Hopf
links of type I, II or III with 25 hexagons.

(3) When we induce a benzenoid Hopf link from a benzenoid trefoil knot as in the
proof of Theorems 3.1 and 3.2, we remove at least two hexagons. So there cannot
exist a benzenoid trefoil knot of type I or II with 25 hexagons.

(4) From the proof of Theorem 3.3, there cannot exist any benzenoid trefoil knot
with 21 hexagons.
1. All the benzenoid links of type I with 25 hexagons are listed in Fig. 19.
2. All the benzenoid links of type II with 25 hexagons are listed in Figs. 19

and 20.
3. All the benzenoid links of type III with 21 hexagons are listed in Fig. 21.

Fig. 18 The inner dual graph of
benzenoid trefoil knot

(b)(a) (c) (d) (e)

Fig. 19 Benzenoid Hopf links of type I and II with 25 hexagons
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(b)(a) (c) (d)

(f)(e) (g) (h)

(j)(i) (k) (l)

(n)(m) (o) (p) (q)

Fig. 20 Benzenoid Hopf links of type II with 25 hexagons

(a) (b) (c)

Fig. 21 Benzenoid Hopf links of type III with 21 hexagons

Remark 4 The Kekule structures play an important role in the study of stability for an
aromatic system [25]. By the approach of recurrence relations [25] or the approach of
transfer matrixes [56], we can get the numbers of Kekule structures of the benzenoid
trefoil knots in Fig. 6. [47] P94–97 also list the numbers of Kekule structures of the
primitive coronoids with less than 16 hexagons. By Fact (2), we can get the numbers
of Kekule structures of any benzenoid Hopf link with less than 26 hexagons.

We summarize our now obtained smaller benzenoid links B, along with their com-
puted Kekule structure counts K (B) in Table 1.
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Table 1 The numbers of Kekule structures of the benzenoid links in Figs. 6, 14, 17, 19–21

B K (B) B K (B) B K (B)

Fig. 6a 19604 Fig. 6b 19604 Fig. 6c 68 × 260

Fig. 6d 112 × 112 Fig. 14a 85 × 365 Fig. 14b 108 × 224

Fig. 14c 200 × 200 Fig. 17 85 × 85 Fig. 19a 68 × 380

Fig. 19b 68 × 416 Fig. 19c 68 × 512 Fig. 19d 112 × 252

Fig. 19e 112 × 224 Fig. 20a 85 × 380 Fig. 20b 85 × 608

Fig. 20c 85 × 490 Fig. 20d 108 × 404 Fig. 20e 108 × 224

Fig. 20f 108 × 260 Fig. 20g 108 × 365 Fig. 20h 108 × 461

Fig. 20i 128 × 260 Fig. 20j 104 × 380 Fig. 20k 200 × 224

Fig. 20l 148 × 224 Fig. 20m 68 × 512 Fig. 20n 68 × 380

Fig. 20o 229 × 224 Fig. 20p 112 × 224 Fig. 20q 112 × 252

Fig. 21a 85 × 108 Fig. 21b 104 × 108 Fig. 21c 68 × 108
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Appendix

In this appendix, we list all the canonical codes of the benzenoid Hopf links of type III
with 22–25 hexagons, as based on the Fact (2). First, we recall canonical codes [56] for
primitive coronoids. Mark any arbitrary point of fusion and then in tracing along one
boundary of the coronoid locate how many vertices before the next fusion, as indicated
in Fig. 22. Obviously, this can be either 0, 1 or 2, whereas if traced along the other
boundary of the same coronoid the respective number of carbon atoms would be 2, 1 or
0. With ai this number of vertices for the ith hexagon, the sequence (a1, a2, . . . , an)

then specifies the particular coronoid. But since any one of the hexagons might be
chosen as the first, and since counts might be either to the right or to the left, and since
one side of the coronoid or the other might be identified as the one to be traced along,
it is seen that (up to) 4n codes are conceivable. Now each of these 4n (sometimes
redundant) strings of digits may be viewed as a ternary number, whence from all these
numbers we choose the smallest to correspond to the canonical code. This n-tuple
code is a distinct identification for a particular primitive coronoid.

Fig. 22 Canonical code Structure Canonical code

0001100011

First fusionsecond fusion
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Table 2 The canonical codes of
the primitive coronoids with 10
hexagons

n Code Code Code

1 0001100011 0010100101 0001010002

Table 3 The canonical codes of
the primitive coronoids with 11
hexagons

n Code Code

1 00101010011 00011001002

Table 4 The canonical codes of the primitive coronoids with 12 hexagons

n Code Code Code Code

1 000111000111 001100110011 001011001011 000110100102

2 000101100012 010101010101 001010101002 000102000102

3 001002001002 000200101002 000200020002

Table 5 The canonical codes of the primitive coronoids with 13 hexagons

n Code Code Code Code

1 0010110100111 0011010101011 0001110010021 0001110010102

2 0010110011002 0010101100102 0001110002002 0001101010012

3 0002001100102 0001100200012 0001020010012 0010020100102

Table 6 The canonical codes of the primitive coronoids with 14 hexagons

n Code Code Code Code

1 00011110001111 00110101100111 00101110010111 00110110011011

2 00102001100111 00011100110012 00011101001102 00010111000112

3 00011101001021 01010110101011 00102010011011 00011011001012

4 00011011000121 00110101011002 00011020001102 00110020011002

5 00101011010012 00101101010102 00011011000202 00010210001102

6 00020011010012 00101100200102 00102010010201 00100120010012

7 00101101002002 00010110100022 00010201001012 00100201010012

8 00012001010021 00010120001012 00101020010102 00012001010102

9 00012000200102 00020100200102 00010201000202 00012000200021

10 00012001002002 00020020010102 00020020002002

Remark 5 The writhe W (C) of the inner dual graph C of a coronoid depends on its
canonical code in a fairly simple way: W (C) = n0−n2

6 , where n0, n2 is the number of
0, 2 in the canonical code resp. To see this result note that as one turns in following
the edges of C around C to return to the initial site, one turns through a net angle
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Table 7 The canonical codes of the primitive coronoids with 15 hexagons

n Code Code Code Code

1 001110011100111 001011101001111 000111100100211 000111100101102

2 001101101010111 000111100101021 001101100200111 001011100110021

3 001011100110102 010110101101011 000111100020102 000111100012002

4 001011011001102 000110110100112 001020101010111 001010111001012

5 000111010100121 001011011001021 000111010101012 001011010110012

6 001020100111002 001101011010102 000200111001012 000111002001012

7 000120011001102 001011100102002 000101110010022 000111002000121

8 000111010020012 000110021000112 000201011001102 000111010100202

9 000110102000112 001002100110012 000120011001021 001101011002002

10 000110101100022 001010200110012 001010201001102 000101200100112

11 000120100110102 001002011001012 000102010100112 000110200100121

12 000120010110012 001011002010012 000201010110012 001100201010102

13 000110200101012 000111002000202 001020011010102 001010201001021

14 001002101001021 000102100101012 000200200110012 000200201001102

15 001020011002002 000102001100022 000110200100202 000110200020012

16 000102002000112 000120100102002 000102100100202 000201002010012

17 000120002010012 000102100020012 001020010200102 000120001200012

Table 8 The benzenoid Hopf link of type III with 22–25 hexagons

101
1, 102

1, 103
1 122

1, 123
1, 124

1, 122
2, 123

2, 122
3

102
1 122

1, 123
1, 124

1, 122
2, 123

2, 121
3, 122

3

111
1, 112

1 111
1, 112

1

101
1, 103

1 131
1, 132

1, 134
1, 131

2, 132
2, 134

2, 131
3, 134

3

102
1 131

1, 132
1, 133

1, 134
1, 131

2, 132
2, 133

2, 134
2, 131

3, 132
3, 133

3, 134
3

111
1 121

1, 122
1, 123

1, 124
1, 121

2, 122
2, 123

2, 124
2, 121

3, 122
3, 123

3

112
1 122

1, 123
1, 124

1, 122
2, 123

2, 121
3, 122

3

142
1, 143

1, 144
1, 141

2, 142
2, 143

2, 141
3, 142

3, 143
3, 144

3, 142
4, 143

4, 144
4, 141

5, 142
5,

101
1, 103

1 143
5, 141

6, 142
6, 143

6, 141
7, 143

7, 144
7, 141

8, 143
8, 144

8, 141
9, 142

9, 143
9, 143

10

142
1, 143

1, 144
1, 141

2, 142
2, 143

2, 141
3, 142

3, 143
3,

102
1 144

3, 142
4, 143

4, 144
4, 141

5, 142
5, 143

5, 141
6, 142

6, 143
6, 144

6, 141
7,

143
7, 144

7, 141
8, 143

8, 144
8, 141

9, 142
9, 143

9, 142
10, 143

10, 144
10

111
1 131

1, 132
1, 133

1, 134
1, 131

2, 132
2, 133

2, 134
2, 131

3, 132
3, 133

3, 134
3

112
1 131

1, 132
1, 133

1, 134
1, 131

2, 132
2, 134

2, 131
3, 132

3, 133
3, 134

3

122
1, 123

1, 124
1,

122
2, 123

2, 122
3 121

1, 122
1, 123

1, 124
1, 121

2, 122
2, 123

2, 124
2, 121

3, 122
3, 123

3

121
1, 121

2, 124
2, 123

3 122
1, 123

1, 124
1, 122

2, 123
2, 122

3

121
3 122

1, 123
1, 124

1, 122
2, 123

2, 121
3, 122

3
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Table 8 continued

151
1, 152

1, 154
1, 151

2, 152
2, 153

2, 154
2, 151

3, 152
3, 153

3, 151
4, 152

4, 153
4, 154

4, 151
5,

152
5, 153

5, 154
5, 151

6, 152
6, 153

6, 154
6, 151

7, 152
7, 151

8, 153
8, 154

8, 151
9, 152

9, 153
9,

101
1, 103

1 154
9, 151

10, 152
10, 153

10, 151
11, 152

11, 153
11, 151

12, 152
12, 153

12, 154
12, 151

13, 152
13,

153
13, 154

13, 151
14, 152

14, 153
14, 154

14, 151
15, 153

15, 154
15, 152

16, 154
16, 151

17, 153
17

151
1, 152

1, 153
1, 154

1, 151
2, 152

2, 153
2, 154

2, 151
3, 152

3, 153
3, 154

3, 151
4, 152

4,

153
4, 154

4, 151
5, 152

5, 153
5, 154

5, 151
6, 152

6, 153
6, 154

6, 151
7, 152

7, 153
7, 154

7,

102
1 151

8, 152
8, 153

8, 154
8, 151

9, 152
9, 153

9, 154
9, 151

10, 152
10, 153

10, 154
10, 151

11, 152
11,

153
11, 154

11, 151
12, 152

12, 153
12, 154

12, 151
13, 152

13, 153
13, 154

13, 151
14, 152

14, 153
14,

154
14, 151

15, 152
15, 153

15, 154
15, 151

16, 152
16, 153

16, 154
16, 151

17, 152
17, 153

17, 154
17

141
1, 142

1, 143
1, 144

1, 141
2, 142

2, 143
2, 144

2, 141
3, 142

3, 143
3, 144

3, 141
4, 142

4,

111
1 143

4, 144
4, 141

5, 142
5, 143

5, 144
5, 141

6, 142
6, 143

6, 144
6, 141

7, 142
7, 143

7, 144
7,

141
8, 142

8, 143
8, 144

8, 141
9, 142

9, 143
9, 144

9, 141
10, 142

10, 143
10, 144

10

142
1, 143

1, 144
1, 141

2, 142
2, 143

2, 141
3, 142

3, 143
3, 144

3, 142
4,

112
1 141

6, 142
6, 143

6, 144
6, 141

7, 143
7, 143

4, 144
4, 141

5, 142
5, 143

5,

144
7, 141

8, 143
8, 144

8, 141
9, 142

9, 143
9, 142

10, 143
10, 144

10

121
1, 124

2, 121
2 131

1, 132
1, 134

1, 131
2, 132

2, 134
2, 131

3, 134
3

122
1, 124

1, 123
1

122
2, 123

2, 122
3 131

1, 132
1, 133

1, 134
1, 131

2, 132
2, 133

2, 134
2, 131

3, 132
3, 133

3, 134
3

121
3 131

1, 132
1, 133

1, 134
1, 131

2, 132
2, 134

2, 131
3, 132

3, 133
3, 134

3

123
3 131

1, 132
1, 134

1, 131
2, 132

2, 134
2, 131

3

of W (C) × 360◦. Concretely when we turn at a vertex vi , we turn 60◦, 0 or −60◦
depending on ai of the canonical code.

Let 15n
m (10n

m , 11n
m , 12n

m , 13n
m , 14n

m , resp.) denote the primitive coronoid in the
(m + 1)-th row and (n + 1)-th column of Table 7 (2, 3, 4, 5, 6, resp.). We list all the
benzenoid Hopf link of type III with 22–25 hexagons in Table 8. Each of them is made
by two primitive coronoids in the same row, such that one is from the first column, the
other is from the second column.
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